欢迎浏览龙湖电子手机网站

龙湖电子有限公司

LH-ELECTRON 成熟的技术与服务

首页 龙湖动态

领先同行伊西斯晶体解析毛坯演变

2023-12-28 15:54:03 

图19

领先同行伊西斯晶体解析毛坯演变,什么是石英晶体坯?这个共振表面如何塑造我们的世界?

当我们想到水晶时,许多人会想到石英。石英几乎是水晶的同义词,主要是因为它的丰富。石英是地壳中第二丰富的矿物。你可能在徒步旅行时捡到了一块石英,或者你看到过这种矿物的闪亮矿脉穿过岩石。在博物馆的礼品店,你很可能会发现一个孩子正在欣赏挂在项链上的一块石英,他们认为这是一件有价值的珍宝。

我们在厨房工作台面和同一厨房的玻璃器皿中最常遇到石英SMD晶体。人们不需要太大的想象力就能想象出一种矿物是如何帮助制造这些产品的。然而,令人震惊的是,一种已经存在了数十亿年的材料还能提供重要的功能未来技术。怎么会?这一切都始于希腊语中的“推”

石英创新的历史导致石英晶体空白

自19世纪后半叶以来,电子技术已经达到了新的高度,我们一直在朝着这个高度飞奔,那时电已经完全用于日常生活。在此期间,由于托马斯·爱迪生、尼古拉·特斯拉和亚历山大·格雷厄姆·贝尔等杰出人物做出了非凡的贡献,电气应用呈指数级增长。

也可以认为,雅克和皮埃尔·居里发现石英晶体作为一种电气元件,应该与爱迪生、特斯拉和贝尔一起被载入开创现代的创新史。这两位科学家(后者最终与他的妻子,开创性的科学家玛丽·居里分享了一半的诺贝尔物理学奖)发现石英在被搅动时会产生电荷。他们将这种现象命名为压电性,来源于希腊语“推动”,以解释被动元件在受压时如何释放电能。

就像任何科学突破一样,石英晶体产生的压电性形成了实验的基础石英晶体振荡器,包括亚历山大尼科尔森和沃尔特盖伊卡迪的贡献。这些进一步的发展有助于科学家理解石英晶体在振荡时产生一个可靠的特定频率,这取决于石英块的大小。到20世纪初,贝尔电话实验室和通用电气公司都开设了研究石英晶体的设施。

到20世纪20年代末,石英晶体单元被制造出来并出售,用于无线电和双向通信。与此同时,第一个可识别的石英产品被发明出来,大多数记得模拟电子学的人都会认出它:石英表。石英表是由Warren Marrison发明的,他基于这样的知识:当晶体被切割成特定尺寸时,会产生相当于一秒间隔的频率脉冲。当集成到手表中时,一块石英晶体用于控制手表秒针的计时,并保持完美的时间。

然而,是奥古斯特·e·米勒开始研磨石英晶振并将其出售给正在试验无线电建筑的无线电爱好者。有趣的是,米勒最初对石英的专业知识来自他为眼镜镜片研磨石英的经验,从而弥合了石英的实际用途与后来成为尖端功能之间的差距。米勒知道,要产生想要的频率,石英必须被切割成一定的尺寸。就像雕塑家从一块固体开始一样,工程师从一块石英晶体开始.

什么是石英晶体坯?

专业制造公司在其自然资源之外种植石英,并将其分销给石英晶体组件的领先设计师。用于工程目的的石英被清除杂质,并在高压釜中在精确的环境条件下变成晶锭。这确保了quartz的高质量(在行业术语中称为高“q”因子)。

此时,被称为“空白”的处理过的石英准备用作电子元件。它是利用蚀刻或研磨工艺切割的,这从根本上决定了它的频率。工程师们已经尝试了更小的尺寸和各种切割方法,以尽可能获得最佳性能的频率元件,特别是随着对更高质量频率解决方案需求的增长。如今,使用最新的测量软件和自动化切割机械,制造商可以进行精确切割,生成非常小且有效的晶体坯。

在石英晶体可以参与工程过程之前,它配有电极和引线,密封在氮气中以防止污染,并经过检查以确保其在许多产品中的性能及其频率性能优势。领先同行伊西斯晶体解析毛坯演变.

可以进行战略调整,以创造理想的性能特征:

  • 频率范围的更多选项
  • 低功耗
  • 频率稳定度
  • 集成到更紧凑的设计中
  • 较小的膨胀,以防止显著的温度系数
  • 石英晶体坯和振荡器的好处

到了1940年代,石英晶体成为最可靠的频率产生材料。在第二次世界大战期间,盟军依靠其价值的无线电传输和雷达系统,证明了他们的成功不可或缺。

从那时起,我们对依赖石英晶体谐振器的技术的依赖呈指数增长,总体上与技术的爆炸式增长同步。石英一直是电子学发展的重要力量。在贝尔电话实验室时代,它就伴随着我们,并在最新的iPhone中继续提供其关键功能。

虽然石英晶体振荡器背后的基本属性、效果和科学在过去150年中保持不变,但是集成石英的技术已经发生了巨大的变化。您可以在当今尖端技术中找到石英晶体电子元件,包括:

  • 医疗设备
  • 数据和通信应用
  • 汽车技术
  • 智能家用电器和功能
  • 工业自动化
  • 人工智能应用
  • 原厂编码 厂家 型号 系列 频率 工作温度
    ECS-35-17-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 3.579545MHz -40°C ~ 85°C
    ECS-40-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 4MHz -40°C ~ 85°C
    ECS-80-18-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 8MHz -40°C ~ 85°C
    ECS-200-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 20MHz -40°C ~ 85°C
    ECS-270-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 27MHz -10°C ~ 70°C
    ECS-110.5-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 11.0592MHz -10°C ~ 70°C
    ECS-143-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 14.31818MHz -10°C ~ 70°C
    ECS-120-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 12MHz -40°C ~ 85°C
    ECS-80-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 8MHz -55°C ~ 125°C
    ECS-110.5-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 11.0592MHz -55°C ~ 125°C
    ECS-40-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 4MHz -55°C ~ 125°C
    ECS-73-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 7.3728MHz -40°C ~ 85°C
    ECS-160-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 16MHz -40°C ~ 85°C
    ECS-100-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 10MHz -55°C ~ 125°C
    ECS-36-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 3.6864MHz -40°C ~ 85°C
    ECS-60-32-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 6MHz -40°C ~ 85°C
    ECS-250-20-5PXDU-F-TR ECS晶振 CSM-7X-DU MHz Crystal 25MHz -55°C ~ 125°C
    ECS-35-18-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 3.579545MHz -55°C ~ 125°C
    ECS-250-18-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 25MHz -40°C ~ 85°C
    ECS-240-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 24MHz -40°C ~ 85°C
    ECS-60-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 6MHz -55°C ~ 125°C
    ECS-120-18-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 12MHz -55°C ~ 125°C
    ECS-147.4-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 14.7456MHz -55°C ~ 125°C
    ECS-160-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 16MHz -55°C ~ 125°C
    ECS-049-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 4.9152MHz -40°C ~ 85°C
    ECS-80-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 8MHz -40°C ~ 125°C
    ECS-240-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 24MHz -40°C ~ 125°C
    ECS-40-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 4MHz -10°C ~ 70°C
    ECS-80-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 8MHz -10°C ~ 70°C
    ECS-35-18-5PVX ECS晶振 CSM-7SSX MHz Crystal 3.579545MHz -10°C ~ 70°C
    ECS-250-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 25MHz -10°C ~ 70°C
    ECS-120-32-5PVX ECS晶振 CSM-7SSX MHz Crystal 12MHz -10°C ~ 70°C
    ECS-041-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 4.096MHz -40°C ~ 85°C
    ECS-196-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 19.6608MHz -40°C ~ 85°C
    ECS-200-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 20MHz -55°C ~ 125°C
    ECS-184-20-5PXDN-TR ECS晶振 CSM-7X-DN MHz Crystal 18.432MHz -40°C ~ 85°C
    ECS-36-20-5PXDU-TR ECS晶振 CSM-7X-DU MHz Crystal 3.6864MHz -55°C ~ 125°C
    ECS-184-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 18.432MHz -10°C ~ 70°C
    ECS-160-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 16MHz -40°C ~ 125°C
    ECS-120-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 12MHz -40°C ~ 125°C
    ECS-200-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 20MHz -40°C ~ 125°C
    ECS-250-18-20BQ-DS ECS晶振 CSM-8Q MHz Crystal 25MHz -40°C ~ 125°C
    ECS-120-18-5PVX ECS晶振 CSM-7SSX MHz Crystal 12MHz -10°C ~ 70°C
    ECS-100-20-5PVX ECS晶振 CSM-7SSX MHz Crystal 10MHz -10°C ~ 70°C
    ECS-80-20-20A-TR ECS晶振 CSM-8 MHz Crystal 8MHz -10°C ~ 70°C
    ECS-240-12-20A-TR ECS晶振 CSM-8 MHz Crystal 24MHz -10°C ~ 70°C
    ECS-100-S-20A-TR ECS晶振 CSM-8 MHz Crystal 10MHz -10°C ~ 70°C
    ECS-400-S-20A-TR ECS晶振 CSM-8 MHz Crystal 40MHz -10°C ~ 70°C
    ECS-200-S-20A-TR ECS晶振 CSM-8 MHz Crystal 20MHz -10°C ~ 70°C
    ECS-320-S-20A-F-TR ECS晶振 CSM-8 MHz Crystal 32MHz -10°C ~ 70°C
    ECS-120-20-20A-TR ECS晶振 CSM-8 MHz Crystal 12MHz -10°C ~ 70°C
    ECS-98.3-20-20A-TR ECS晶振 CSM-8 MHz Crystal 9.8304MHz -10°C ~ 70°C
    ECS-110.5-S-20A-TR ECS CRYSTAL CSM-8 MHz Crystal 11.0592MHz -10°C ~ 70°C
    ECS-147.4-S-20A-TR ECS晶振 CSM-8 MHz Crystal 14.7456MHz -10°C ~ 70°C
    ECS-184-S-20A-TR ECS晶振 CSM-8 MHz Crystal 18.432MHz -10°C ~ 70°C
    ECS-200-20-20A-TR ECS晶振 CSM-8 MHz Crystal 20MHz -10°C ~ 70°C
    ECS-240-S-20A-TR ECS晶振 CSM-8 MHz Crystal 24MHz -10°C ~ 70°C
    ECS-240.0014S20A-TR ECS晶振 CSM-8 MHz Crystal 24.00014MHz -10°C ~ 70°C
    ECS-360-S-20A-F-TR ECS晶振 CSM-8 MHz Crystal 36MHz -10°C ~ 70°C
    ECS-400-S-20A-F-TR ECS晶振 CSM-8 MHz Crystal 40MHz -10°C ~ 70°C
  • What Is a Quartz Crystal Blank? How Does This Resonating Surface Shape Our World?

  • When we think of a crystal, many of us imagine quartz. Quartz is nearly synonymous with the word crystal, primarily because of its abundance. Quartz is the second most abundant mineral in our Earth’s crust. You have likely picked up a piece of quartz while hiking, or you’ve seen a sparkling vein of this mineral running through a rock. In museum gift shops, you are likely to find a child admiring a piece of quartz strung from a necklace, which they consider a valuable treasure.

    We encounter quartz most frequently on kitchen countertops and in that same kitchen’s glassware. One does not have to stretch their imagination too far to imagine how a mineral could aid in making these products.However, it is staggering to think that a material that has been present for billions of years can also provide vital functionality infuture technologies. How? It all begins with the Greek word for “push.”

    The History of Quartz Innovations Leading Up to the Quartz Crystal Blank

    Electronics have reached new heights that we have been hurtling toward since the latter part of the 19th century, when electricity was fully harnessed for everyday use. During this time, electrical applications increased exponentially, as luminaries like Thomas Edison, Nikola Tesla and Alexander Graham Bell made their extraordinary contributions.

    It can also be argued that Jacques and Pierre Curie’s discovery of quartz crystal as an electrical component should be included alongside Edison, Tesla and Bell in the history of innovation that ushered in modernity. These two scientists (the latter of whom eventually shared half of the Nobel Prize for Physics with his wife, the groundbreaking scientist Marie Curie) discovered that quartz, when agitated, creates an electrical charge. They named this phenomenon piezoelectricity from the Greek word for “push” to explain how a passive element releases electricity when stressed.

    Much like any scientific breakthrough, piezoelectricity generated by quartz crystal formed the basis for experiments withquartz crystal oscillators, including contributions by Alexander Nicholson and Walter Guy Cady. These further developments helped scientists to understand that quartz crystal when oscillated created a dependable and specific frequency depending on the size of the piece of quartz. By the turn of the 20th century, Bell Telephone Laboratories and the General Electric Company both opened facilities to study quartz crystal.

    By the late 1920s, quartz crystal units were built and sold for radios and two-way communication. Concurrently, the first recognizable quartz product was invented, which most people who remember analog electronics will recognize: the quartz watch. The quartz watch was invented by Warren Marrison, who built on the knowledge that a crystal, when cut to a specific size, generates frequency pulses that are the equivalent of one second intervals. When integrated into a watch, a piece of quartz crystal is used to control the timing of the watch’s second hand and keep perfect time.

    However, it was August E. Miller who began grinding quartz crystal and selling it to radio enthusiasts who were experimenting with radio-building. Interestingly, Miller’s initial expertise with quartz came from his experience grinding the crystal for eyeglass lenses, thus bridging the gap between practical uses of quartz with what was to become a cutting-edge function. Miller knew that to create a desired frequency, quartz must be cut to a certain size.Much like a sculptor who begins with a solid block, the engineer begins with a quartz crystal blank.

    What Is a Quartz Crystal Blank?

    Quartz is grown outside its natural source by specialized manufacturing companies for distribution to leading designers of quartz crystal components. Quartz used for engineering purposes is cleaned of impurities and turned into an ingot under precise environmental conditions in an autoclave. This ensures quartz’s high quality (referred to in industry jargon as a high “q” factor).

    At this point, the treated quartz, which is referred to as a “blank,” is prepared for use as an electronic component. It is cut utilizing an etching or grinding process, which fundamentally determines its frequency. Engineers have experimented with smaller sizes and various cutting methods to attain the best performing frequency components possible, particularly as the demand for higher quality frequency solutions has grown. Today, using the latest iterations of measurement software and automated cutting machinery, manufacturers can make precise cuts to generate exceptionally small – and effective – crystal blanks.

    Before quartz crystal can participate in the engineering process, it is outfitted with electrodes and leads, hermetically sealed in nitrogen for contaminant protection and inspected to ensure its performance in the many products its frequency capability benefits.

    Strategic adjustments can be made to create desirable performance characteristics:

    • Further options for frequency range
    • Low power consumption
    • Frequency stability
    • Integration into more compact designs
    • Less expansion to protect from significant temperature coefficients

    The Benefits of Quartz Crystal Blanks and Oscillators

    By the 1940s, quartz crystal emerged as the most reliable frequency-generating material. During World War II, allied forces relied upon its value for radio transmissions and RADAR systems that proved integral to their success.

    Since that time, our reliance on quartz-crystal-dependent technology has grown exponentially, tracking with the explosive growth of technology in general. Quartz has remained a vital force in the evolution of electronics. It was with us in the days of Bell Telephone Laboratories and continues delivering its key functionality in the latest iPhone.

    Although the basic properties, effects and science behind the quartz crystal oscillator have remained the same over the past 150 years, the technology into which quartz is integrated has changed drastically. You can find quartz crystal electronic components in today’s cutting-edge technology, including:

    • Medical devices
    • Data and communication applications
    • Automotive technology
    • Smart home appliances and features
    • Industrial automation
    • AI applications
          分享到:

网友热评

点击返回顶部点击返回顶部